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We develop a thermodynamic formalism for a dissipative version of the Zhang
model of Self-Organized Criticality, where a parameter allows us to tune the
local energy dissipation. By constructing a suitable Markov partition we define
Gibbs measures ( in the sense of Sinai, Ruelle, and Bowen), partition functions,
and topological pressure allowing the analysis of probability distributions of
avalanches. We discuss the infinite-size limit in this setting. In particular, we
show that a Lee–Yang phenomenon occurs in the conservative case. This
suggests new connections to classical critical phenomena.

KEY WORDS: Self-organized criticality; hyperbolic dynamical systems with
singularities; thermodynamic formalism; Lee–Yang singularity.

In 1988, for the first time, Bak, Tang, and Wiesenfeld (BTW) (1) proposed a
mechanism allowing a dynamical system to reach ‘‘spontaneously’’ a steady
state exhibiting some analogies with a thermodynamic system at a critical
point. In the BTW paradigm an external perturbation may induce a chain
reaction or avalanche in the system. Then, when submitted to a stationary
and adiabatic flux of external perturbations, the system is driven to a sta-
tionary state where avalanches are distributed according to a truncated power
law, the cutoff being due to finite-size effects. This phenomenon, called by
these authors Self-Organized Criticality (SOC), was quite unexpected, since
attaining the critical state of a thermodynamic system usually requires a fine
tuning of some control parameter (temperature, magnetic field, etc.), which
is absent from the definition of the BTW model or of its many variants. (2, 3)

This big difference between SOC systems and thermodynamic systems which



exhibit a second-order phase transition was certainly the main point which
attracted the physics community. There are, however, other differences
certainly explaining why, despite the huge number of papers written on the
subject, there is still no general scheme for analyzing these systems properly.

The analysis of a critical regime requires first a precise characterization
of the steady state in a finite-size system. In equilibrium statistical mechan-
ics the starting point is the definition of an ensemble (microcanonical,
canonical, grand canonical,...) corresponding to a given set of constraints
(e.g., quantities conserved, on average, by the microscopic dynamics, such
as the energy or the number of particles). Then, the variational principle,
stating that the entropy is maximum at equilibrium, defines, for finite-size
and given constraints, a unique probability measure on the phase space: the
Gibbs distribution. The free-energy density is the generating function of the
cumulants. In the next step, one has to define properly the thermodynamic
limit. This can be done via the Dobrushin–Landford–Ruelle (DLR) con-
struction. Under suitable conditions on the interactions one can show that
the infinite volume Gibbs measure exists as well as the limit of the free-
energy density. (5) Away from phase transitions the free-energy density is,
moreover, analytic and is used to compute the ensemble averages in the
thermodynamic limit. On the other hand, at a phase-transition point, the
free-energy density loses analyticity. A fruitful analysis of the correspond-
ing singularity can be performed from the behavior of the zeros of the finite-
size partition function (‘‘Lee–Yang’’ zeros) when the size increases. (6–12)

The usual methods of statistical mechanics are not directly applicable
to SOC systems. The stationary regime being the result of a specific non-
Hamiltonian microscopic dynamics, there is no ‘‘natural’’ Gibbs distribu-
tion nor free energy in SOC systems. Moreover, the steady state corre-
sponds to a nonequilibrium situation since the flux of externally injected
energy is dissipated, on average, in the bulk or at the boundaries, inducing
a constant energy flux through the system. But the presence of thresholds
in the definition of the dynamics implies that the energy can be accu-
mulated locally, eventually generating a chain reaction which may trans-
port the energy on arbitrary large scales. Consequently, it is not possible
to analyze the out-of-equilibrium stationary state via a local equilibrium
hypothesis where one decomposes the system into mesoscopic cells locally
at equilibrium. Finally, most of the results in this field rely on numerical
simulations of finite-size systems, and the properties of the infinite-volume
system have to be extrapolated from these data. Unfortunately, to handle
these numerical results properly it is imperative to know the right finite-size
scaling form and to have good control of the bias induced by numerics.
Since there is no general theory, different Ansatz have been proposed, (13–15)

but there are still debates on the correct finite-size scaling.
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In refs. 16–19, we proposed an analysis of one SOC model, the Zhang
model, (20) using tools and concepts from dynamical system theory and
ergodic theory. We realized that the Zhang model is one of the few
dynamical systems where one can establish a connection from the micro-
scopic dynamics to a macroscopic description by using standard tools from
dynamical system theory. In particular, our results opened up the possi-
bility of constructing a thermodynamic formalism in the sense of Sinai,
Ruelle, and Bowen. (21–23) In this setting, one defines in particular an exten-
sion of the notion of Gibbs measure, where the Hamiltonian is replaced by
a dynamically relevant quantity. Like the ‘‘standard’’ Gibbs distribution,
these measures are constructed from a variational principle (see the
Appendix). We discussed in refs. 16 and 18 the possibility of using this
formalism to relate the microscopic dynamics to some macroscopic char-
acteristics of the critical state. On the other hand, we argued that in this
setting one may properly define the stationary state of the finite-size
dynamical system, thereby allowing for a correct extrapolation of its prop-
erties when the size tends to infinity. This opened up, therefore, the possi-
bility of solving some of the difficulties discussed above and of bringing a
new contribution to the analysis of SOC models.

In the present paper we develop this aspect. More precisely, we
show how the thermodynamic formalism may be used in the Zhang model
to construct the equivalent of finite-volume Gibbs measures where the
Hamiltonian is replaced by a dynamically relevant potential. This allows
us to obtain generating functions of the avalanche distributions, which are
the formal equivalent to partition functions and free energy in statistical
mechanics. We then develop a method inspired by the Lee–Yang zeros
analysis in the usual critical phenomena. This allows us to characterize the
SOC state by extrapolating to the infinite-size limit and to gain a theoreti-
cal control on the validity of the extrapolations made from numerical sim-
ulations (this last aspect is fully developed in ref. 24).

For this purpose, we introduce a nonconservative version of Zhang
model, where a parameter h controls the local energy dissipation. This
parameter, as we show, has to be tuned to h=0 to obtain a critical state in
the thermodynamic limit. Consequently, our model ‘‘self-organizes’’ into
a ‘‘critical’’ state only in the conservative case. However, the presence of
this additional parameter gives us some freedom to control the dynamics.
Moreover, it allows us to outline the role of boundary dissipation in the
process of self-organization into a critical state.

The paper is structured as follows. The first part is devoted to the
analysis of the dynamical properties of the finite-size model. After a pre-
sentation of the model and of the general setting (Sections 1.1 and 1.2), we
discuss some fundamental properties of the stationary state in a finite-size
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system (Section 1.3). We show that the finite-size system is weakly hyper-
bolic (all Lyapunov exponents bounded away from zero). We also establish
a link between the energy transport and the Lyapunov exponents that play
a role similar to the eigenvalues of the Laplace operator in diffusion
(Section 1.3.2). We then derive explicit equations for the first negative
Lyapunov exponent, the density of active sites, and the dissipation rate
(Section 1.3.3). This allows us to make an extrapolation of the model
properties when L Q . (Sections 1.3.4 and 1.3.5).

The second part develops the thermodynamic formalism and shows, in
particular, that the full dynamics can be described by a finite Markov chain
(sub-shift of finite type) while the initial dynamical system has uncountably
many states. The construction is based on a redefinition of the dynamical
system in terms of return maps that play a role similar to the toppling
operators in the Abelian sandpile. (25) More precisely, there is a one-to-one
correspondence between each return map and each avalanche (Section 2.1).
In Section 2.2, we show that almost every point has local stable and unstable
manifolds. This result is partially based on a rigorous statement and par-
tially on a numerical simulation. Then we construct in Section 2.3 a Markov
partition allowing a symbolic coding of the dynamics in which each symbol
corresponds to a given avalanche. We discuss in Section 2.4 the properties of
the corresponding Markov chain. We propose in Section 2.5 several versions
of Gibbs measures from which we can extract equations such as Eqs. (48),
(49), (50), and (65) linking some characteristics of the microscopic dynamics
to the avalanche distributions. We discuss the finite-size scaling (Section 2.6)
and the thermodynamic limit in this setting. It is then shown, in Section 2.7,
that when the size of the system diverges, a Lee–Yang phenomenon (6) occurs,
related to a loss of analyticity of the topological pressure. This unexpected
result opens up an effective way to ‘‘map self-organized criticality to criti-
cality.’’ (26) We show that the Lee–Yang phenomenon is observed only when
the energy is locally conserved (h=0). Moreover, the critical exponent
characterizing the divergence of the correlation length of the avalanche
size distribution when h Q 0 is analytically related to the angle that the
Lee–Yang zeros form with the real axis, in strong analogy with the usual
critical phenomena. The Appendix presents a short presentation of the
thermodynamic formalism, for the benefit of non-specialists.

1. GENERAL SETTING

1.1. Definitions

The Zhang model is defined as follows. Let L be a d-dimensional
box in Zd, taken as a square of edge length L, for simplicity. Denote
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N=#L=Ld, where # denotes the cardinality of a set. Each site i ¥ L is
characterized by its ‘‘energy’’ Xi, which is a nonnegative real and finite
number. Denote by X={Xi} i ¥ L

a configuration of energies. Let Ec be a
real, positive number, called the critical energy, and M=[0, Ec[N. A con-
figuration X is stable when X ¥ M and unstable otherwise. In an unstable
configuration, the sites i such that Xi \ Ec are called active or unstable.
The dynamics on X depends on whether X is stable or unstable.

If X is stable, one chooses a site i ¥ L at random with probability 1
N

and adds to it the energy d=1 (excitation). If X is unstable, each active site
loses a part of its energy, redistributed in equal parts to its 2d neighbors
in the following way (relaxation). Fix two3 real parameters, E ¥ [0, 1[ and

3 Note that the original Zhang model corresponds to the case E=0. The straightforward
extension proposed here allows us to avoid pathological dynamical effects due to the exis-
tence of zero eigenvalues for the tangent maps when E=0. (18)

h \ 0. Set c=Eh, EŒ=Ec=E1+h, and a=(1 − E)
2d . When i is active it gives the

energy aXi to its 2d neighbors and keeps the energy EŒXi. Therefore the
energy is locally conserved in the case h=0, whereas there is local dissipa-
tion4 when h > 0. The relaxation dynamics is synchronous, and it is useful

4 The case h < 0 would correspond to local energy injection. However, in this case there may
not exist a stationary regime (see Section 1.3.3).

to express it in terms of the map

F(X)=X+(c − 1) EZ(X) f X+aD[Z(X) f X]. (1)

In this equation, Z(X) is an N-dimensional vector, such that Zi(X)=0
if Xi < Ec and Zi(X)=1 if Xi \ Ec. The f denotes the product component
by component: if X and Y are N-dimensional vectors, X f Y is the
N-dimensional vector of components XiYi. D is the discrete Laplacian
on L.

The succession of relaxations leading an unstable configuration to a
stable one is called an avalanche. Let “L be the boundary of L, namely the
set of points in Zd 0L at a distance 1 from L. The sites of “L always have
zero energy (dissipation at the boundaries). Since the total energy in a finite
lattice is finite, all avalanches stop within a finite number of iterations for
h \ 0. The addition of energy is adiabatic. When an avalanche occurs, one
waits until it stops before adding a new energy quantum. Further excita-
tions eventually generate a new avalanche, but, because of the adiabatic
rule, each new avalanche starts from only one active site.

The structure of an avalanche is encoded by the sequence of active
sites:

C={Ct}1 [ t [ yC
, (2)
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where

Ct={j ¥ L | Xj \ Ec in the tth step of the avalanche} (3)

and where yC, called the avalanche duration, is the smallest number such
that CyC+1=”. Each avalanche can be labeled by a double index (i, j).
The first index refers to the site where the energy is dropped and the second
index labels the different avalanches starting at i ( including the ‘‘empty’’
avalanche, where the excitation of i does not render it active). Moreover,
to each avalanche (i, j) corresponds a convex domain M(i, j) in M. For a
fixed i, these domains form a partition of M. (18)

The total energy of a stable configuration in a finite lattice being finite
( it is bounded by LdEc), the total number of different avalanches is finite
for finite L (but diverges as L Q . when h=0 as discussed below). Call
l(i) < . the number of different avalanches starting at i (note that l(i)
depends on L and h). The size s of an avalanche is the total number of
active sites, s(C)=# 1t Ct. The area a is the number of distinct active sites
in C. We will generically denote by n an avalanche observable (size, dura-
tion, area) and n(i, j) will be the value that n takes in the avalanche (i, j).

Because all avalanches are finite (for finite L), and since we are
not interested in the transients, one can, without loss of generality, take
all initial energy configurations X ¥ M. All trajectories starting from M
belong to a compact set D. Denote Ma=D0M. Ma contains the set of all
unstable energy configurations achievable in an avalanche starting from an
energy configuration in M. It is useful to encode the dynamics of excitation
in the following way. Let S+

L be the set of right infinite sequences
ã={a1,..., ak,...}, ak ¥ L, and s be the left shift5 over S+

L , namely

5 Throughout this paper, we will often think of the left Bernoulli shift on S+
L as represented by

the system z Q Nz mod 1, z ¥ [0, 1]. In particular, this allows for a definition of the tangent
map in the direction of the shift.

sã=a2a3 · · · . The elements of S+
L are called excitation sequences. The

set S+
L ×D is the phase space of the Zhang model and X3=(ã, X) is a

point in the phase space. The Zhang model dynamics is given by a map
F3: S+

L ×DQ S+
L ×D such that:

X ¥ MS F3(X3)=(sã, X+ea1
) (Excitation), (4)

X ¥ MaS F3(X3)=(ã, F(X)) (Relaxation), (5)

where ea is the ath canonical basis vector of RN. The knowledge of an
initial energy configuration X and of an excitation sequence ã fully deter-
mines the evolution. One can endow S+

L with a probability distribution
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corresponding to a random choice of the excited sites. The excited sites are
chosen at random and independently with uniform probability. This corre-
sponds to endowing S+

L with the uniform Bernoulli measure, denoted by nL

in the sequel.

1.2. The Two SOC Conjectures

The model definition entails the convergence of the dynamics to a sta-
tionary state where the average incoming energy flux is compensated by the
dissipated energy flux. It is furthermore conjectured in the SOC literature
that the model is ‘‘ergodic.’’ Although this terminology is common in the
physics literature, it is misleading since the Zhang model admits infinitely
many ergodic measures. In particular, one may generate infinitely many
different stationary states by periodic excitation (in this case, one can easily
show that the corresponding ergodic measure has its support on a limit
cycle). What is implicitly meant is that the stationary state is reached for
generic choices of the initial energy configuration and of the excitation
sequence. In the dynamical systems terminology, this corresponds to
assuming that there exists a unique natural or Sinai–Ruelle–Bowen (SRB)
measure. (21–23) 6 On physical grounds, the existence of a unique SRB

6 Let m̂L be an invariant measure on S+
L ×D. Let k be some function, integrable with respect

to m̂L. Denote by k̄L the time average:

k̄L(X3)=def lim
T Q .

1
T

C
T

t=1
k(F3 t(X3)), (6)

and let > k(X3) dm̂L(X3) be the ensemble average with respect to m̂L. Then m̂L is an SRB
measure if k̄L(X3)=> k(X3) dm̂L(X3) for a set of initial conditions X3 of positive Lebesgue mea-
sure. (27) If the SRB measure is unique, then the time average and the ensemble average with
respect to m̂L are equal for a set of initial conditions of full Lebesgue measure. Moreover, if F3

is topologically mixing, namely if for any open sets O1, O2 … A, ,T — T(O1, O2) > 0 such that
O1 5 F3 tO2 ] ”, -t \ T, then the SRB measure is the weak limit:

m̂L=lim
t Q .

F3 t(nL × m (0)
L ) (7)

where nL is the excitation measure, m (0)
L the Lebesgue measure on the space of energy con-

figurations, and F3 gt(nL × m (0)
L ) is the image of nL × m (0)

L under the map F3 t.

measure is the minimal required property since it implies that, if one selects
the initial conditions at random with a uniform probability (or any proba-
bility possessing a density), then the time average will not depend on the
initial condition.

Although implicitly assumed in almost all SOC papers, this property is
far from being trivially true. (Actually, there are only a few physical models
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where the existence and uniqueness of an SRB measure is rigorously estab-
lished.) This has been widely discussed in a previous paper, (18) where strong
mathematical arguments in favor of this were given. Actually, the existence
of a unique SRB measure was proved but restricted to the one-dimensional
model and to some Ec interval. We will go one step further in Section 2.2
but will not completely prove this property in this paper. Consequently, we
will state it as a conjecture in the sequel, the first SOC conjecture:

Conjecture 1. For any finite L, there exists a unique SRB measure
m̂L for generic values of the parameters Ec, E, h \ 0 and whatever the lattice
dimension d < ..

Call PL(n, h) the probability distribution7 of the avalanche observable

7 By definition this is the m̂L measure of the union of domains Mi, j such that n(i, j)=n.

n in the stationary regime for a lattice of size L and denote by OnPL, h the
corresponding average

OnPL, h= C
t

n
L (h)

n=0
nPL(n, h), (8)

where tn
L(h) is the maximal value that the random variable n can take,

among all the avalanches having a nonzero probability of occurrence in
the stationary regime, in a lattice of size L. For simplicity, we will write
PL(n, 0)=PL(n) (OnPL, 0=OnPL) for the conservative case h=0. The
numerical simulations report that PL(n) has a power-law shape over a finite
range, with a cutoff corresponding to finite-size effects. As L increases, the
power-law range increases. In the SOC literature it is assumed that the limit
L Q . of the model is well defined, and that the corresponding probability
distribution for n, Pg(n), is a power law. This is again a conjecture that has
not yet been proved in the Zhang model. Let us call it the second SOC
conjecture:

Conjecture 2. As L Q ., for h=0, and for each observable n,
PL(n) converges to a power law

Pg(n)=
K
nyn

, n=n0 > 0 · · · ..

This entails the scale invariance of the corresponding stationary state,
which has, therefore, some common features with a critical state. yn is
called the critical exponent of the observable n. It is commonly admitted
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in the SOC community that a classification of the models can be made
through the knowledge of their critical exponents (‘‘universality classes’’).

We will not prove this conjecture but will give new insights based par-
tially on the rigorous formalism developed in this paper and partially on
numerical results. Before this we discuss in the next sections some funda-
mental properties of the Zhang model.

1.3. Characterizations of the SRB State

1.3.1. Macroscopic Observables

Since the SRB measure is the stationary state, the physically relevant
quantities characterizing the stationary regime are obtained from m̂L.
Denote w̄L=def

m̂L(S+
L ×M). By definition this is the probability of injecting

energy in the system at a given time or excitation rate. The average incom-
ing energy flux, at stationarity, is given by the vector F̄L with components:

F̄L(i)=
w̄L

N
=def

f̄L, (9)

corresponding to the average energy received by the site i per unit time.
Note that in this paper we consider, for simplicity, the case where the
energy is uniformly distributed in the lattice, though most of the results
hold in the more general case where F̄L is not spatially uniform.

Define

rL(i)=Prob[Xi(t) \ Ec]=def
m̂L[{X3 , Xi \ Ec}], (10)

the probability that the site i is active in the stationary regime, and let rL

be an N-dimensional vector, rL={rL(i)}N
i=1. The quantity

rav
L =

1
N

C
N

i=1
rL(i) (11)

is often called the density of active sites in the literature. It has been intro-
duced by Vespignani and Zapperi (29) as an order parameter in SOC models.
Moreover, these authors introduced the quantity

qL=def “rav
L

“f̄L

, (12)

which they interpret as a response function with respect to variations in the
excitation rate. In particular, considering the excitation at a given point
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and at a given time as a perturbation in the relaxation dynamics, qL char-
acterizes the linear response to this perturbation. Note that qL depends
on h. In particular, we show below that, in our model, qL diverges when
h=0 and L Q ., as expected for a critical phenomenon.

In the following subsections, we show that the finite Zhang model is
weakly hyperbolic (all Lyapunov exponents bounded away from zero).
This is an important step in our construction of the thermodynamic for-
malism. We have, in fact, a deeper result. On the basis of the theory devel-
oped in ref. 19, one may construct an operator, called the transport opera-
tor, whose eigenvalues correspond to the less negative Lyapunov exponents
(corresponding henceforth to the longest time scales). This allows us to
obtain an explicit formula for the first negative Lyapunov exponent, the
density of the active site, and the energy dissipation rate. Then, an extrap-
olation to the limit L Q . shows that the Zhang model loses hyperbolicity,
in the conservative case, when L Q . (but remains hyperbolic for h > 0).
The hyperbolicity implies that the finite-size Zhang model has exponential
time-correlation decay. In the opposite case, the loss of hyperbolicity in the
limit L Q . corresponds, in the Zhang model, to a divergence of the cor-
relation-decay rate and the time-correlation decay becomes algebraic in the
thermodynamic limit, as expected for a critical phenomenon.

1.3.2. Hyperbolicity, Lyapunov Exponents, and Energy Transport

Let DF3 t
X3 be the derivative8 of F3 t at X3 . The particular structure of the

8 Note that this matrix is piecewise constant with X3 ( it has jumps at every point X3 such that ,i
with Xi=Ec).

dynamics (4) implies that, for all t, DF3 t
X3 is block diagonal. The one-

dimensional block corresponds to a positive Lyapunov exponent:

lL(0)=w̄L log(N). (13)

The excitation dynamics is therefore expansive with a rate proportional to
the excitation rate w̄L. Note that lL(0) is also the Kolmogorov–Sinai (KS)
entropy. The relaxation dynamics being contracting, (18) the N correspond-
ing Lyapunov exponents are strictly negative. Order them so that 0 > lL(1)
\ lL(2) \ · · · \ lL(N) and denote by vi(X3) in RN the Oseledec mode corre-
sponding to lL(i), for the trajectory X3 .

It has been shown in ref. 19 that the negative Lyapunov exponents
corresponding to slow time9 scales can be computed from a linear operator

9 Namely, time scales quite a bit longer than the exponential rate of correlation decay.

L: RN
Q RN which acts on a vector v ¥ RN as:

L(v)=v+2(c − 1) ErL f v+2aD(rL f v). (14)
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L has the structure of the transition operator in a diffusion process.
It is obtained by associating to the relaxation dynamics the motion of a
tagged particle. The particle stays at the same place if the corresponding
site i is stable (Zi(X)=0). If Xi is unstable (Zi(X)=1) the particle has a
(conditional) probability a of jumping to a neighbor site, a probability EŒ of
staying at the same place, and a probability E − EŒ=(1 − c) E of disappear-
ing (dissipation in the bulk). Using a Markovian approximation, valid only
for time scales quite bit larger than the correlation decay, and taking into
account some additional constraint in the dynamics (a site cannot relax in
two successive time steps), one shows that the transition operator of this
process is L. (19) We call it the transport operator in the sequel.

The slow Lyapunov exponents are well approximated by the eigen-
values of L. We have drawn in Fig. 1 the Lyapunov spectrum for L=20,
Ec=2.2, E=0.1, h=0.1, d=2 and the eigenvalues of L, with (Fig. 1(a))
and without (Fig. 1(b)) boundaries ( in this case L is a 2 dimensional
torus). The results show that the slowest modes are well approximated
while there is an increasing discrepancy when the characteristic time
decreases. This corresponds to the failure of the Markovian approximation
used to compute L. The slow eigenmodes of L correspond to the Oseledec
modes of the relaxation dynamics and are the analogs of Fourier modes in
normal diffusion.

The largest negative Lyapunov, lL(1), defines a characteristic time
scale or escape rate, tL(1)= 1

|lL(1)| , corresponding to the time taken by a
particle to exit the system, either by disappearing in the bulk or by escaping

0 20 40 60 80 100
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–0.01

0.00

λ
 L(

i)

Lyapunov spectrum : L=20,Ec=2.2, =0.1,h=0.1.

Lyapunov spectrum.
Singular values.
Normal diffusion.

0 100 200 300 400
–0.05

0

0 20 40 60 80 100
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Lyapunov spectrum (torus) : L=20,Ec=2.2, =0.1,h=0.1.

Lyapunov spectrum.
Normal diffusion.
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Fig. 1. (a) Lyapunov spectrum for L=20, Ec=2.2, E=0.1, h=0.1, d=2 and the singular
values of (14). (b) The Lyapunov spectrum for the same parameters values but without
boundaries (torus).
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from the boundaries. In terms of the dynamical system (4) the largest
negative Lyapunov exponent is the exponential decay rate of a generic per-
turbation around some point X. Consequently, lL(1) also gives the decay
rate of the initial local perturbation induced by the excitation and tL(1)
defines the characteristic time required for this perturbation to vanish. The
first Lyapunov exponent is well approximated by (Fig. 2):

lL(1) ’ −
2w̄L

E+
tot

, (15)

where E+
tot=;N

i=1 X̄+
L (i) and X̄+

L (i) is the conditional expectation of Xi

given that Xi \ Ec (see next section). Therefore lL(1) scales like the dis-
sipated energy per unit time (see Theorem 2 in ref. 19).

In the presence of boundaries rL is nonuniform in the lattice (see
Fig. 3(a)). The consequence is that the Lyapunov spectrum departs from
the spectrum of a normal diffusion that one would obtain if rL were to be
spatially uniform (except for the first eigenvalue). In particular, at time
scales of the order of the average duration of an avalanche, one obtains an
anomalous diffusion exponent z directly related to the scaling properties
of the Lyapunov spectrum. (19) On the other hand, were rL to be uniform
in the lattice (rL(i)=rav

L ), the eigenmodes would agree on the long time
scales, as revealed in Fig. 1(b), for the same model defined on a torus,
with bulk dissipation. In this case indeed, rL is spatially uniform and
the Lyapunov spectrum corresponds to normal diffusion on the long time
scales.

1 10 100
L

1e–04

1e–03

1e–02

1e–01

–
λ

L
(1

)

h=0.
h=0.1.

Fig. 2. First Lyapunov exponent lL(1) versus L for Ec=2.2, E=0.1, h=0, and h=0.1.
The theoretical values given by are drawn by solid lines.
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For the shortest time scales (time scales of the order of one step of
the dynamics), the diffusion is singular. This is due to the presence of
thresholds. The corresponding modes correspond to directions of fast
re-stabilization on the attractor. (19) On long time scales the effect of the
threshold is averaged and smoothed (it acts in rL), but on small time scales
(of the order of the microscopic time) it induces singularities in the dynamics.

1.3.3. Stationarity Equations

It is possible to obtain an approximate analytic expression for rL by
noting that

FbL − XbL=F {(c − 1) EZ(X) f X+aD[Z(X) f X]} dm̂L(X3) (16)

is the average energy lost by each site in each time step of the dynamics
in the stationary regime. At stationarity, this loss is compensated by the
average entering energy flux F̄L. The balance equation has the form

(c − 1) EUbL+aDUbL=−F̄L, (17)

where UbL=def
rL f Xb+

L . The vector Xb+
L ={X̄+

L (i)}N
i=1 is such that the ith

component, X̄+
L (i)=def E[Xi |Xi \ Ec], is the conditional expectation of Xi

given that Xi \ Ec. (Alternatively, X̄+
L (i) is the average energy of Xi given

that Xi is active.)
It is easy to solve (16) by decomposing UbL on the eigenmodes of the

Laplacian. rL can then be obtained by noting that the spatial fluctuations
of X+

L are small (except near the boundary). One therefore considers X+
L as

spatially constant. This yields the following approximation for rL:

rL(x)=C
n

An D
d

i=1
sin(kixi), (18)

where x=(x1,..., xn) is the set of coordinates of a point in a d-dimensional
lattice, n=(n1,..., nd) is the set of quantum numbers parameterizing the
eigenmodes of the discrete Laplace operator, and

sn=5(c − 1) E+2a 1 C
d

i=1
cos(ki) − d26 (19)

is the corresponding eigenvalue with ki=
nip

L+1 .
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The coefficients An are given by

An=−
2dw̄L

E+
tot(L+1)d

<d
i=1 Cni

sn
,

where E+
tot=;N

i=1 X̄+
L (i) and,

Cni
= C

L

x=1
sin(ki.x)=(−1)mi

sin( nipL
2(L+1))

sin( nip

2(L+1))
, (20)

where n i=2mi+1.
The density of active sites rav

L = 1
N ;N

i=1 rL(i) is given by

rav
L =−

w̄L

LdE+
tot

cL, (21)

where

cL=1 2
L+1

2d

C
n

<d
i=1 C2

ni

sn
. (22)

Equations (18) and (21) are in very good agreement with the empirical
values. In Fig. 3(a) we plot the empirical and theoretical values of rL for
L=40, Ec=2.2, E=0.1, and h=0.1 and in Fig. 3(b) the empirical and
theoretical curve rav

L as a function of L, for Ec=2.2, E=0.1, h=0 and
h=0.1.
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Fig. 3. (a) Empirical and theoretical values of rL for L=40, Ec=2.2, E=0.1, h=0.1.
(b) The empirical and theoretical (solid lines) curve representing rav

L as a function of L, for
Ec=2.2, E=0.1, h=0, and h=0.1.
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Equation (21) is a balance equation. It can indeed be rewritten as

rav
L ēL=f̄L, (23)

where we recall that f̄L=w̄L
N is the average energy injected per unit time and

per site (see Eq. (9)) and

ēL=
E+

tot

|cL |
(24)

corresponds (from Eq. (23)) to the average energy dissipated per unit time
and per active site. In the literature it is called the dissipation rate. (29)

Equation (23) implies that the susceptibility (12) obeys:

qL=
1
ēL

−
f̄L

ē2
L

“ēL

“f̄L

=
1
ēL

51 − rav
L

“ēL

“f̄L

6 . (25)

Were f̄L and the dissipation rate ēL to be independent, this relation
would reduce to qL= 1

ēL
. This corresponds to the result found by Vespignani

and Zapperi in a sandpile model where the excitation rate per site and dis-
sipation rate were independent tunable parameters. (29) Relation (25) is an
extension of this result to the case where ēL and f̄L are not independent and
tunable parameters but are determined by the microscopic evolution. ( This
is exactly what is meant by ‘‘self-organized.’’)

As L Q . it is easy to see that the leading contribution in (22) corre-
sponds to modes n=(n1,..., nd) such that nk < b(L+1) for some b > 0
which can be taken arbitrary small. Indeed, for these modes, according to
Eqs. (20) and (26), Cni

’ 2(L+1)
nip

while sn ’ (c − 1) E − p2

(L+1)2 ;d
i=1 n2

i . Conse-
quently, the sum on these modes scales like (L+1)2d ;g (2/p)2d

n2d
i [(c − 1) E − a((nip)/(L+1))2]

where ;g denotes the sum on the n’s such that sup k nk < b(L+1). On the
other hand, one can decompose the remaining terms in the sum defining cL

into sums on the modes n so that exactly r components are smaller than
b(L+1). Each sum scales like (L+1)2r, where r < d. Therefore, as L Q .,
|cL | scales like a (L+1)d

2(1 − c) E
when h > 0, and like c(L+1)d − 2 when h=0, with a

and c nonnegative constants. Furthermore, E+
tot ’ Ld since Ec [ X̄+

L (i) < K,
i=1 · · · N, where K is some constant independent of L. Therefore, when
L Q . the dissipation rate, ēL, obeys the scaling relation

ēL ’ X̄+
L [2(1 − c) EA+CL−2], (26)

where A and C are positive constants. Consequently, when h > 0, the dis-
sipation rate converges to a positive value as L Q ., while it converges to 0
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Fig. 4. (a) Dissipation rate versus L for Ec=2.2, E=0.1 for h=0 and h=0.1 ( inset: corre-
sponding values of X̄+

L ). The solid lines represent the fitting curves X̄+
L CL−2 (conservative case

h=0) and X̄+
L [a+CL−2] (nonconservative case h=0.1) corresponding to Eq. (26). (b) shows

the corresponding graph for w̄L.

like L−2 when h=0. In Fig. 4(a) we plotted the dissipation rate ēL. The
fitting curves X̄+

L CL−2, conservative case (h=0), and X̄+
L [A+CL−2],

nonconservative case (h=0.1), corresponding to Eq. (26), are drawn in
solid lines. A and C were obtained by regression. In Fig. 4(b) the excitation
rate w̄L is represented.

Note that there exists a stationary regime only if the dissipation rate is

positive. Henceforth, there exists an hL given by ;n

<d
i=1 C2

ni
sn

=0 such that
for h < hL there is no stationary regime. hL behaves asymptotically like
log(1 − (CL− 2/2E))

log(E) and converges to 0 as L Q ..

1.3.4. Distributions of Avalanche Observables

Since the energy used to initiate an avalanche is dropped locally,
tn

L(h), the maximal value that the random variable n can take, among all
the avalanches having a nonzero probability of occurrence in the stationary
regime, in a lattice of size L, is the largest scale where the effect of a local
perturbation is observed, within one avalanche. Thus it corresponds to a
correlation length within one avalanche and is a function of h. As discussed
above, tn

L(h) < . for h \ 0, L < ..
In the subcritical regime h > 0 the avalanche size (resp. duration, area,

etc.) is bounded -L. Indeed, consider the evolution, under the singular
diffusion (1), of a configuration Y in the infinite lattice10 Zd, such that

10 With bulk dissipation since h > 0.
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Ec > Yi \ Ec − g, g > 0, -i ¥ Zd, with excitation at some point i0 ¥ Zd.
Consider simultaneously the normal damped diffusion YŒ(t+1)=YŒ(t)+
(c − 1) EYŒ(t)+aD[YŒ(t)] on Zd with a source d=1 applied at time t=0
at the site i0, where Y −

i(t)=max(Yi(t) − (Ec − g), 0). By definition Yi(t) [

Y −

i(t)+Ec − g, -t \ 0. YŒ(t) converges asymptotically to 0 and it is easy to
show11 that there exists both a bounded region R … Zd containing i0 and

11 On Zd the eigenmodes of the damped diffusion equation are l(k)=(c − 1) E − ak2, where k
is the wave vector in the Fourier space. The presence of the damping coefficient (c − 1) E

ensures the existence of the region R.

a time t0 such that, -t \ t0 and -i ¥ Zd 0R, 0 [ Y −

i(t) < g

2 . Since Yi(t) [

Y −

i(t)+Ec − g, Yi(t) [ Ec − g

2 < Ec, -t \ t0, -i ¥ Zd 0R. Consequently, the
avalanche C(Y) does not go beyond R and the duration (resp. area, size)
of C(Y) is bounded. Now, since the largest avalanche size in a finite box
L … Zd is generated from a stable configuration X such that Xi < Ec it
is possible to find a configuration Y as above such that C(X) … C(Y),
provided g is sufficiently small (g < Ec − max i ¥ L Xi). Consequently, tn

L(h) <
n(C(Y)) < ., -L, -h > 0. It follows that the maximal size, area, etc. are
bounded, together with the corresponding average values, when h > 0.
Moreover, the energy excitation rate, w̄L(h), scales like 1

OyPL, h
. Consequently,

w̄L(h) converges, as L Q ., to a strictly positive value in the subcritical
regime (see Fig. 4(b)).

On the other hand, the average avalanche observable and the corre-
sponding correlation lengths diverge in the conservative case when L Q ..
First, the behavior of the average avalanche size OsPL, h, as a function
of h and L is obtained from a stationarity condition ensuring the balance
between the incoming energy flux (d=1 is injected each time an avalanche
ends) and the average energy flux dissipated within an avalanche
(OsPL, h ēL(h)). This gives

OsPL, h ’
1

ēL(h)
’

1
X̄+

L [2(1 − c) EA+CL−2]
. (27)

Therefore OsPL, h converges to a constant when h > 0, while it diverges like
L2 in the conservative case. (19) The adiabaticity condition imposes that the
number of active sites at the tth avalanche step be bounded from above
by a constant independent of L. This implies that the expectation of the
avalanche observables a and y also diverges. It is numerically observed that
OnPL diverges like

OnPL ’ Lcn, (28)

where n=a, s, t, and cn > 0 in the conservative case.
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Since most of the results available ( in particular the numerical ones)
are obtained for finite L, one has to propose a finite-size scaling form
allowing an extrapolation to L Q . from finite-size lattices results. The
most common scaling Ansatz (see, in particular ref. 29) is the following
(adapted to our notations):

PL(n, h)=n−ynf 1 n
tn

L(h)
2 , n > n0, (29)

where n0 > 0 is model-dependent.
This scaling form is discussed in more detail in Section 2.5. This is

the analog of the finite-size scaling used in critical phenomena. Note that
Eq. (29) implies OnPL, h ’ tn

L(h) (2 − yn). Therefore, in the conservative case,
tn

L(0) ’ Lbn, where

bn=
cn

2 − yn

and PL(n)=n−ynf( n
Lbn

). This corresponds to the finite-size scaling Ansatz
proposed by Kadanoff et al. (13) for SOC systems. Clearly, in this scaling
form, yn and bn are characteristic exponents allowing a determination of
the universality class of Pg(n).

Equation (29) also implies that the correlation length of avalanche size
is a function of the dissipation rate with a scaling:

t s
L(h)=ēL(h)− 1

s, (30)

where s=2 − ys. Therefore, for h=0, the correlation length diverges like Lbs,
where bs=

2
2 − ys

, and, for h > 0, t s
L(h) converges to a constant t s(h)=

(2A(1 − c) E)− 1
s. Finally, as h Q 0, t s(h) ’ h−d, where d=1

s . Consequently,
d is a characteristic exponent related to the singularity of correlation length
t s

L(h) as h Q 0. In Section 2.7 we show how the exponents yn, bn, and s can
be determined from the behavior of the zeros of a suitable partition func-
tion in full analogy with the usual critical phenomena.

From Eqs. (21) and (26) the density of the active sites behaves asymp-
totically like:

rav
L ’

w̄L

E+
tot[2(1 − c) EA+CL−2]

. (31)

Consequently, the density of the active site converges to 0 for any
h \ 0 and scales like 1

E+
tot

’ L−d for h > 0 and like w̄L

Ld − 2 ’ L2 − d − cy for h=0,
where OyPL ’ Lcy.
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Finally, let us discuss the behavior of the susceptibility (25). It behaves
like 1

ēL
=OsPL as L Q . (unless the term rav

L
“ēL
“f̄L

converges to 1 as L Q .).
This extends the relation already found by Vespignani and Zapperi (29) for
sandpiles to the Zhang model.

1.3.5. Extrapolation to L Q .

Let us now make several important remarks resulting from the analy-
sis of the previous sections. For h=0, when L Q . the system reaches a
state where the correlation lengths tn

L, n=a, y, s diverge, and where the
avalanches are statistically distributed according to a power law. In this
sense, this corresponds to a critical state, reached spontaneously by the
sole effect of the relaxation dynamics, of the adiabaticity condition in the
energy excitation, and of the vanishing of the boundary dissipation rate.
From the dynamical point of view, the positive Lyapunov exponent
w̄L log(N), which is also the Kolmogorov–Sinai entropy, vanishes since the
excitation rate w̄L tends to zero. Therefore the asymptotic state has zero
entropy. Correspondingly, the first negative Lyapunov exponent tends to
zero (see Eq. (15)). Consequently, the Zhang model loses its hyperbolic
structure in the limit L Q .. This is clearly expected since the loss of
hyperbolicity is a necessary condition for algebraic correlation decay.

For h > 0, the correlation lengths remain bounded and the positive
Lyapunov exponent (the entropy) diverges like log(N) since w̄L(h) tends
to a strictly positive value for h > 0. Hence, h can be used as a control
parameter allowing a tuning of the system to the critical regime. In
Section 2.7 we show that the corresponding phase transition can be
handled by analyzing the Lee–Yang zeros of the proper partition function.
The next part is devoted to the construction of the thermodynamic for-
malism for the Zhang model.

2. THERMODYNAMIC FORMALISM

In this part, we construct a symbolic encoding of the dynamics by
a finite Markov chain, in a way such that each symbol corresponds to
energy configurations undergoing the same avalanche when a specified site is
excited. Hence, the coding is relevant not only for a characterization of the
microscopic evolution but also for a description of the avalanche dynamics.
The first SOC conjecture implies that there is a unique invariant measure in
the code space for the associated Markov chain corresponding to the SRB
measure (Section 2.5). By definition, it characterizes the microscopic
dynamics. In particular, its support corresponds to the so-called ‘‘SOC
attractor.’’ (1, 3) But, by construction, it also characterizes the macroscopic
avalanche distribution. This measure is a particular example of Gibbs
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measures in the sense of Sinai–Ruelle–Bowen. We construct other examples
of these Gibbs measure in Section 2.5, by changing the weights in the
Markov transition matrix, and discuss their connections with the micro-
scopic dynamics and with the distribution of avalanche observables.

2.1. The Return Maps

We first redefine the Zhang model dynamics in terms of return maps.
The avalanche, after the excitation of a site, maps unstable to stable con-
figurations. One can view this process as a mapping from MQM where
one includes the excitation process. Let Ti be the map MQM which asso-
ciates to a stable energy configuration X the next stable configuration
resulting from an avalanche obtained by the excitation of the site i in the
configuration X. Then:

Ti(X)=Fy(i, X)(X+dei), X ¥ M, (32)

in terms of the mapping of Eq. (1). The quantity

y(i, X)=def inf{t \ 0, F t(X+dei) ¥ M}

is the duration of the avalanche obtained by exciting the site i in the stable
configuration X. Note that Ti(X) is a simple translation in the case where
the excitation of i does not render it active.

From the mappings Ti, i ¥ L, we construct a new dynamical system
where the phase space is W=S+

L ×M, where, as above, S+
L is the set of

right infinite excitation sequences ã={a1,..., ak,... | ak ¥ L} but, this time,
X is a stable energy configuration and X3=(ã, X) is the corresponding
point in W. Let p1 and p2 be the canonical projections respectively on S+

L

and M (namely p1(X3)=ã, p2(X3)=X).
The evolution is now determined by a dynamical system of skew

product type, T: W 0 W such that:

T(X3)=def (sã, Ta1
(X)); X3=def (a, X). (33)

Set X3(t)=T t(X3) and X(t)=p2(T t(X3)). X(t) is now the stable energy
configuration obtained after t avalanches, starting from the energy config-
uration X, when the excitation sequence is ã=p1(X3).

Due to the particular structure of the mapping (1), each map Ti, i ¥ L,
is a piecewise-affine map. (18) Denote by T(i, j) the j th affine component12 of

12 The maps T(i, j) play, in some sense, the role of the toppling operators introduced by Dhar
for Abelian sandpiles. (25) However, the structure of the Zhang model is more complex since
these operators neither commute nor preserve the Lebesgue measure.
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the map Ti. Denote M(i, j) the domain of definition of T(i, j). There is a one-
to-one correspondence between the set of avalanches and the set of affine
mappings. T(i, j) maps the energy configurations in M(i, j) to the stable con-
figurations resulting from the avalanche (i, j).

The set of points S where T is not continuous is called the singularity
set. This is a union of hyperplanes13 constituting the borders “M(i, j) of the

13 The number of singularity planes is finite when L < ., but it tends to infinity as L Q .

when h=0.

M(i, j)’s. The singularity set S is therefore the set of stable energy configu-
rations such that some sites have an energy exactly equal to Ec at some
time during some avalanche. These configurations have, therefore, some
site ‘‘right at the threshold’’ at some time of their evolution. They are,
therefore, highly sensitive to an infinitesimal perturbation on the energy of
these sites. S plays an important role in the dynamics, which is discussed
in the next section.

It can be proved that each map T(i, j) is a quasi-contraction. More pre-
cisely, it contracts on the subspace generated by the canonical basis vectors
corresponding to the active sites and is neutral on the remaining part
of RN. Furthermore,

det(T(i, j))=E s((i, j)), (34)

where s((i, j)) is the size of the corresponding avalanche. (18)

Since W has a product structure, and since the excitation is indepen-
dent of the dynamics on energy configurations, the invariant measures
which we consider decompose as m̂u

L × m̂ s
L, where m̂u

L is the induced measure
on the unstable direction or excitation measure, and m̂ s

L is the induced
measure on M, or measure on the stable energy configurations. In the
Zhang model m̂u

L is the uniform Bernoulli measure since the successive
excited sites are chosen independently with a fixed rate 1

N . To the SRB
measure defined in Section 1.3.2 corresponds an SRB measure for Eq. (33)
with product structure m̂u

L × m̂ s
L. In the following we will keep the notation

m̂L for the SRB measure of the dynamical system (33).

2.2. Local Stable Manifolds

The construction of a Markov partition requires that almost every point
have a local stable and unstable manifold.14 Recall that the local stable

14 By construction, each point has a local unstable manifold, the set S+
L .

manifold Ws
loc(X3) of X3 ¥ W is the largest connected set such that -Y3 ¥ W s

loc,
d(T t(Y3), T t(X3)) Q 0 when t Q ., d being a distance on W. Therefore, the
trajectory of any point belonging to W s

loc(X3) is asymptotically identical to
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the trajectory of X3 , and these points are equivalent from the dynamical
point of view. Equivalently, if X3 has a local stable manifold of diameter
larger than some g > 0 then a small perturbation of size [ g in the config-
uration space will be asymptotically damped.

Were the map T to be regular, the existence of local stable manifolds
would be ensured by the standard theorems on regular (C1+a) hyperbolic
dynamical systems. (31) However, T is not continuous on the singularity set
S and some points may have no local stable manifolds.

The main problem is to estimate the m̂L measure of the ‘‘bad’’ points
having no local stable manifold. The following result is useful.

Proposition 1. Let Ud(S)={Y3 ¥ W | d(Y3 , S) [ d} be the g-neigh-
borhood of S. Assume that for g > 0 sufficiently small:

m̂L[Ug(S)] [ Cga (35)

for C > 0 and a > 0. Then m̂L almost every point has a local stable mani-
fold of positive diameter.

Proof. The existence of a local stable manifold of positive diameter
for a point X3 in the support of m̂L is ensured if one can find a number
0 > c > lL(1) and a time t0 < . such that -t > t0, d(T tX3 , S) > ect. Indeed,
in this case a sufficiently small ball around X3 contracts asymptotically
faster than it approaches the singularity set, and, consequently, all the
points of this ball belong to the stable manifold of X3 . Consequently, the set
of bad points is included in the set:

{X3 | -t0 \ 0, ,t \ t0, d(T tX3 , S) [ ect}= 3
.

t0=0
0
.

t=t0

T−t(Uect(S))

for some c such that 0 > c > lL(1). From the Borel–Cantelli lemma the
measure of this set is zero provided the series ;.

t=0 m̂L[Uect(S)] converges.
This is true if the condition (35) holds with g=ec. L

We have not yet established a mathematical proof of the condition
(35) but we have strong numerical evidence. We have numerically com-
puted (Fig. 5) mL{Ug(S)} as a function of g for L=30, Ec=2.2, E=0.1,
h=0, h=0.1. We observe that mL{Ug(S)} decays like ga, as g Q 0, where
a=0.98 ± 0.01 for h=0 and h=0.1. This observation is supported by
another well-known result, already in the early paper of Zhang. The energy
density per site has the characteristic structure15 depicted Fig. 5(b). More

15 The remarkable peak structure of this distribution has interested many people, but no one
has been able, up until now, to give an analytic form for it.
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Fig. 5. (a) Probability mL{Ug(S)} as a function of g for L=30, Ec=2.2, E=0.1, h=0, and
h=0.1. (b) Probability r(E), where d=2, L=30, Ec=2.2, E=0.1, and h=0. Inset: zoom
around Ec.

precisely, in this figure, we have plotted r(E)=def
mL[X | ,i ¥ L, Xi ¥ [E,

E+dE]]. If we focus on a small neighborhood of Ec, we note that r(E)
is seemingly absolutely continuous on the left (explaining the exponent
a ’ 1).

The conclusions drawn from this simulation are quite fascinating. On
one hand, they numerically support the assumption (35). On this basis, we
will therefore assume in the following that m̂L almost every point has a
local stable manifold of diameter bounded from below. Then it is possible
to generate a finite Markov partition P used for symbolic dynamics in the
next section.

But on the other hand, this shows that the probability of approaching
a small neighborhood of S, though weak, is nonzero. Consequently, the
Zhang model displays an interesting form of initial condition sensitivity.
Indeed, if a trajectory approaches S sufficiently close at a time t, a small
perturbation in the energy configuration at time t can induce a response
which is not proportional to the perturbation. This happens if the perturbed
trajectory crosses the singularity set since the avalanche will be different in
the initial configuration and in the perturbed configuration. More preci-
sely, if, in the trajectory of an energy configuration X, a site i has its energy
arbitrary close to Ec at some time t, then it is obvious that a small pertur-
bation on this site can induce a completely different evolution. This phe-
nomenon is particularly prominent since the measure of any g-neighbor-
hood of the singularity set is positive for g > 0. This indeed means that, with
positive probability, a trajectory will show wild sensitivity to arbitrarily
weak perturbations for those times when it approaches the singularity set.
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Fig. 6. Variation of mL{Ug(S)} as a function of Ec for L=30 (a) and as a function of L
(b), for g=0.001 and g=0.0001, Ec=2.2, E=0.1, and h=0. The statistics were done for 10
trajectories and 106 time steps per trajectory.

This results in an effective unpredictability of the evolution (weak initial
condition sensitivity).

We have also numerically noticed (Fig. 6(b)) that mL{Ug(S)} decreases
with Ec and increases with L. This suggests that the initial condition sensi-
tivity is more and more prominent as L grows. Note that the number of
singularity planes diverges as L Q . for h=0.

Finally, the existence of local stable manifolds of sufficiently large
diameter is a crucial step toward the proof of Conjecture 1. This allows us
to form a Hopf chain (a path made of pieces of local stable and unstable
manifolds between iterates of almost every point Z3 , Y3 when they visit
Ug(X3)). Moreover, it is shown in ref. 18, that, in many cases, there exists a
topologically transitive orbit. By standard arguments from ergodic theory
concerning the equality of forward and backward averages one can then
prove that almost every pair of points on the invariant set belongs to the
same ergodic component. This is exactly Conjecture 1. Consequently, the
only missing step toward a proof of this conjecture is a mathematical vali-
dation of the numerical result presented in Fig. 5.

2.3. Markov Partition and Symbolic Dynamics

In this section, we construct a symbolic coding of the dynamics, relevant
for a characterization of both the microscopic dynamics and the avalanches
dynamics. One first has to construct a finite Markov partition of the phase
space W=S+

L ×M. (28) The existence of a finite Markov partition is ensured
by the existence of a local stable manifold of sufficiently large diameter for
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almost every point in W. (18) Moreover, in this case one may construct a
Markov partition P={Pw}w ¥ I, where I is finite, such that each domain
Mij is a finite union of the partition elements. By construction, to each
element w of this partition corresponds a sub-domain Pw … Mij and hence-
forth a unique avalanche (i, j). Equivalently, to each w one can associate
a double index (i(w), j(w)), where the first index refers to the site where
the avalanche starts and the second to the corresponding avalanche. Note,
however, that several symbols may correspond to the same avalanche since
an avalanche (i, j) is usually represented by several partition-elements.
However, in order to simplify the notation we will use w and the avalanche
(i(w), j(w)) whenever this causes no confusion.

To the Markov partition P we associate a transition matrix A=
(Aij)i, j ¥ I such that Aij=1 if Pj 5 T−1(Pi) ] ” (the transition i Q j is
legal) and Aij=0 otherwise, and a transition graph G with vertices w ¥ I
and oriented edges i Q j for all pairs (i, j) such that Aij=1. This provides
a symbolic dynamics description of the Zhang model where the trajectory of
a point is represented by a legal sequence of symbols · · · w1w2 · · · wn · · ·
corresponding to the partition elements that this point meets in its history.
By construction we have the following properties:

(i) Every (legal) finite path w1,..., wn, wk ¥ I corresponds to a legal
sequence of avalanches (i(w1), j(w1)),..., (i(wn), j(wn));

(ii) For any X3 , each orbit segment {T l(X3)}1 [ l [ n is realized as a path
of length n on the Markov transition graph.

Denote by w̃=w−n · · · w−1w0w1w2 · · · wn · · · , where Awn, wn+1
=1, n ¥ Z,

a legal bi-infinite sequence. Call X (X+) the set of bi-infinite (right infinite)
legal sequences. There is a one-to-one correspondence, denoted by 4 ,
between a symbolic sequence w̃ and a point X3 in the phase space (up to a
set of measure zero). Let p=(p+, p−) be the corresponding conjugating
mapping such that if w̃ 4 X3=(ã, X), then p+(w̃)=ã and p−(w̃)=X. Note
that p+ projects on the unstable direction (S+

L ), while p− projects on the
stable space (M). Write [w̃]n for an n-cylinder (this is the subset of X
where the sequences have the same n first digits as w̃). Denote by sA the
shift on X. The forward orbit of w̃ under sA encodes, by definition, the
excitation sequence, and the backward orbit of w̃ encodes the point in
the energy configuration space M.

2.4. Markov Chain and the SOC State

We construct a Markov chain by defining a transition kernel W from
the matrix A. A has the following property. Let D+

w be the set of follower
elements of w (and D−

w the set of predecessors of w). #D+
w \ N, -w since
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after the avalanche corresponding to w one can excite any site in L. More-
over, by definition of the Markov partition, if b, c ¥ D+

w and b ] c, then
i(b) ] i(c). Hence, #Dw=N, -w. Consequently, A has exactly N nonzero
components per row, corresponding to each of the N possible choices of an
excited site, and the topological entropy is log(N).

Since the excited site of L is chosen with respect to the uniform
Bernoulli measure the transition probability of the Markov partition for
any edge from w to D+

w is constant, equal to 1
N . Therefore the transition

kernel is

W=
1
N

A. (36)

As a consequence, W is a sparse matrix. Indeed, the number of
symbols w is at most equal to the number of possible avalanches, which is
bounded from below by the largest avalanche size (duration, area) t s

L.
Since, for h=0, t s

L ’ Lbs, bs > d, the proportion of nonzero entries on
each row, rL= N

#I 4 Ld − bs, tends to zero as L Q .. This remark justifies
approximating the transition matrix by a random matrix. This could be
used as an approximation to determine the spectral gap of W (see the dis-
cussion).

The set of symbols I decomposes into transient and recurrent nodes.
Call R(I) the set of recurrent nodes and NL=def #R(I) the number of
elements in R(I). The first SOC conjecture requires that the set of
recurrent nodes be irreducible. This is not in contradiction with the
sparseness of W. For example, it can be proved that for sparse random
matrices, with K(m) uniformly distributed nonzero entries per row, where
m is the size of the matrix, the set of nodes is almost-surely constituted by
one irreducible recurrent cluster as m tends to infinity provided K(m) >
log(m). (34)

If W is mixing,16 Conjecture 1 writes, for the Markov chain,

16 There exists n \ 1 such that, for each pair i, j, Wn(i, j) > 0, i.e., there is a path connecting
each node i, j.

mL=lim
t Q .

ṽW t, (37)

where v is any initial probability distribution on I. Note that Eq. (37) is
the analog of Eq. (7), footnote 4. In this case W has a unique eigenvalue 1
and a unique left eigenvector mL, corresponding to the invariant probability
distribution of the Markov chain. (35) mL(w) is nonzero only if w ¥ R(I).
Furthermore, there is a spectral gap between the second eigenvalue with the
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largest modulus and 1. The gap gives the exponential correlation decay and
also the rate of convergence to equilibrium. Since the Zhang model loses
hyperbolicity as L Q ., it is expected that the gap vanishes for h=0 and
stays positive for h > 0 when L Q ..

The invariant probability distribution mL characterizes the probability
of occurrence of any recurrent symbol at stationarity. This is, therefore, the
fundamental object characterizing the SOC state. In particular, the proba-
bility distribution of an avalanche observable is given by

PL(n, h)= C
w ¥ I, n(w)=n

mL(w). (38)

Recall that n(w) stands for n(i(w), j(w)). This is the value that the
observable n takes in the avalanche i(w), j(w). Note that mL depends on h,
but we dropped this dependence in order to simplify the notation. The
moments of n are given by

OnqPL, h= C
w ¥ I

nq(w) mL(w)= C
t

n
L

n=0
nq C

w ¥ I, n(w)=n
mL(w)= C

t
n
L

n=0
PL(n, h) nq.

(39)

More generally, the joint probability m̃L on the space of infinite sym-
bolic sequences X is obtained from the Chapman–Kolmogorov equation.
For any cylinder [w̃]T=w1 · · · wT:

m̃L([w̃]T)=mL(w1) Ww1w2
Ww2w3

· · ·WwT − 1wT
. (40)

As is shown in the next section, m̃L is the measure of maximal entropy
log(N). Also note that since m̂L, the SRB measure on W, has a constant
Jacobian along unstable fibers (see next section), it is also the measure of
maximal entropy. Therefore the measure m̃L projects down to m̂L via m̂L=
m̃L p p−1 with marginals m̂u

L=m̃L p p+ and m̂ s
L=m̃L p p−. In the following

we will therefore make no distinction between the average with respect to
m̃L or with respect to m̂L. From the measure m̃L one can compute all the
time correlations whence also the joint probability on the space of trajec-
tories of n(t) of the observable n (see Eq. (54)).

2.5. Thermodynamic Formalism, Gibbs Measures, and Generating

Function of Avalanche Size Distribution

In this section, we use the thermodynamic formalism (see Appendix)
to construct Gibbs measures by choosing different families of potentials.

The SRB measure m̂L is the equilibrium state which maximizes the
potential − log(det(p+(DTX3 ))). (27) In the Zhang model this potential is a
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constant − log(N). It follows that the SRB measure maximizes the entropy.
Since the maximal metric entropy is the topological entropy log(N), it also
follows that the SRB measure has zero pressure. Moreover, according to
Eq. (72), each cylinder [w]T, of length T, has the same measure m̂L[w]T

= 1
NT . Therefore, m̂L is uniform on the attractor. Then the probability of

having an avalanche of size s (resp. duration y, area a, etc.) is proportional
to the number of symbols w such that s(w)=s.

Note that the invariant measure is also uniform in the Abelian sand-
pile, (25) but in our case the attractor has a more complex structure. In the
Abelian sandpile the attractor is a finite set of points in an N-dimensional
torus,17 while in the Zhang model this is a fractal set. More precisely, the

17 The toppling operators in the Abelian sandpile are translations in the phase space and the
phase space is finite.

dynamical system (33) is a probabilistic graph iterated function system
(IFS) (see ref. 38 for a review) with maps18 {Tw}w ¥ I, with transition graph

18 Note that, although these maps are only quasi-contractions, any finite composition of these
maps along the graph is a contraction.

A and where the probability of selecting a map {Tw}w ¥ I is the SRB mea-
sure. (18) In the simplest cases, it is possible to construct the attractor of the
Zhang model ‘‘by hand,’’ by simple iteration of the IFS. (18)

It is well known that the thermodynamic formalism is a powerful tool
to analyze the structure of fractal sets, by choosing suitable potentials. (38) It
is remarkable that, in the Zhang model, these potentials also characterize
properties of avalanche distributions. Let us introduce a first family of
potentials:

f1
b, q(w̃)=−q log(N)+b log(det(DTw1

)), (41)

where DTw1
stands for DT(i(w1), j(w1)). For q=1, b=0 the corresponding

Gibbs measure is the SRB measure. Tuning q and b allows one to select
different Gibbs measures (singular with respect to the SRB), giving more
information about the attractor structure. In particular, for conformal IFS,
these potentials are used to compute the multifractal spectrum, which is the
Legendre transform of the function D(q)=b(q)

q − 1 (the q-Renyi dimension),
where b is such that the corresponding topological pressure vanishes. (38)

F1
L(b(q), q)=0. (42)

Now, according to Eq. (34), log(det(DTw̃1
))=log(E) s(w1), namely the

phase-space contraction is proportional to the avalanche size. Conse-
quently:

f1
b, q(w̃)=−q log(N)+b log(E) s(w1). (43)
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The partition function is written as

Z1
T(b, q)=

1
NTq C

w̃ ¥ q
+
T

D
T

t=1
Ebs(wt). (44)

By introducing the transition matrix A, one may rewrite Z1
T(b, q) as

Z1
T(b, q)=

1
NTq C

s1,..., sT

E;T
t=1 bst C

w̃ ¥ cs1,..., sT

Aw1, w2
Aw2, w3

· · ·AwT − 1, wT

where cs1,..., sT
={w̃ | s(w1)=s1; s(w2)=s2;...; s(wT)=sT}. Finally,

Z1
T(b, q)=

GT(b,..., b)
NT(q − 1) , (45)

where

GT(b1,..., bT)= C
s1,..., sT

E;T
t=1 btst Prob[s1,..., sT] (46)

is the generating function of the T-time joint probability of avalanche sizes
Prob[s1,..., sT]. As a consequence, the topological pressure F1

L(b, q) may
be used to compute the averages of the avalanche-size distribution.

The first important example follows from Eq. (73) (Appendix). The
average phase-space contraction rate is given by

“F1
L(b, q)
“b

:
b=0, q=1

=log(E)OsPL, h. (47)

This equation is analogous to the one giving the magnetization when
deriving the free energy with respect to a uniform local field. This is an
important result derived from the thermodynamic formalism since it relates
the average volume contraction rate given by the sum of negative Lyapunov
exponents19 zL(i) to the average avalanche size:

19 These are the Lyapunov exponents of the dynamical system (33) (return maps). Since 1
w̄L

is
the average return time zL(i)=lL(i)

w̄L
, i=1 · · · Ld.

C
N

i=1
zL(i)=log(E)OsPL, h. (48)

Now, since OsPL, h ’ ēL, we have

C
N

i=1
lL(i) ’ log(E)

w̄L

ēL
(49)
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Therefore, in the Zhang model, the average contraction rate in the
phase space is given by the ratio between the excitation rate and the dissipa-
tion rate. This is a prominent example of connection between a microscopic
quantity and macroscopic observables.

The second derivative of the pressure with respect to b is

“
2F1

L(b, q)
“b2

:
b=0, q=1

= lim
T Q .

1
T

C
T

t=1
Oswt

sw0
PL, h −OsP2

L, h. (50)

Hence, this equation gives the variance, along a typical trajectory, of
the Gaussian fluctuations of the avalanche size (equivalently, of the con-
traction rate) around the average values. In Section 2.7 we discuss the
failure of differentiability of F1

L(b, q) for h=0 in the thermodynamic
limit, which implies that “

2F
1
L(b, q)

“b2 |b=0, q=1 diverges and that the central limit
theorem is violated (as expected for a critical phenomenon).

More generally, Eq. (34) implies that the local volume contraction is
distributed according to a truncated power law (PL(s)). This certainly
entails important properties for the structure of the attractor in the Zhang
model. This is briefly discussed below and in more detail in ref. 39.

Equation (46) suggests that more detailed information about the
probability distribution of avalanche sizes, or more generally of any other
avalanche observable n, can be obtained by introducing in the potential
the formal equivalent of a local magnetic field g, which allows, in statis-
tical mechanics, the computation of the local magnetization and of the
higher-order cumulants. A natural variation of (41) is the time-dependent
potential:20

20 q is set to 1 here because this potential is used to compute averages with respect to the SRB
measure. One may, however, consider a generalization where q is a tunable parameter.

fg(t, w̃)=−log(N)+gtn(wt), (51)

where g=(g1,..., gt,...), and the partition function

ZT(g1,..., gT)=N−T C
w ¥ q

+
T

e;T
t=1 gtn(wt), (52)

which gives (44) by setting q=1 and gt=b. Set

FL(g)= lim
T Q .

1
T

log(ZT(g1,..., gT)); (53)
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then this function generates the k-time correlations of the observable n:

“
kFL(g)

“g1 · · · “gk

:
g=0

=On1; n2;...; nkPL, h. (54)

In particular, the cumulants CL(k) of the marginal distribution PL(n)
are given by

“
kFL(g)
“gk

1

:
g1=0

=CL(k)=
“

kGL(t)
“tk

:
t=0

, (55)

where

GL(t)=def log(Oe tnPL, h)=log 1 C
t

n
L(h)

n=0
PL(n, h) e tn2 (56)

is the generating function of the cumulants of PL(n, h).
Now let us return to (41). It was mentioned in the beginning of this

section that f1(b, q) is used to compute the multifractal spectrum of con-
formal IFS. As discussed above, this leads us to suspect that there might be
some connection between the structure of the attractor and the avalanche-
size distribution. This is mainly due to the fact that the local contraction
rate is given by the avalanche size (Eq. (34)). However, the Zhang model is
not conformal ( the contraction is not uniform in the phase space, as is
easily seen in the Lyapunov spectrum of Fig. 1). In spite of this, we believe
that the potential (41) might be useful when considering the marginal
energy distribution of one site. This point is under current investigation
and will be published elsewhere (ref. 39).

It is, anyway, possible to compute the multifractal spectrum of non-
conformal IFS with a (sub-additive21) thermodynamic formalism. Let

21 The framework for such a generalized thermodynamic formalism is described in ref. 40 and
in greater generality in ref. 41.

a i(w̃, k), i=1 · · · N, k=1 · · · ., be the singular values of the matrix
DTwk

· · · DTw1
ordered such that 1 \ a1(w̃, k) \ · · · \ aN(w̃, k) > 0 and note

that there is a finite k such that, whatever w̃, -l > k, 1 > a1(w̃, l). Define:

gb(w̃, k)=a1(w̃, k) a2(w̃, k) aj − 1(w̃, k)(aj(w̃, k))b − j+1 if 0 < b [ N,
(57)

gb(w̃, k)=(det(Twk
p · · · p Tw1

)
b

N )=E
b

N ;k
l=1 s(w l) if b \ N, (58)
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where, in Eq. (57), j is the integer such that j − 1 < b [ j. Consider the (sub-
additive) potential:

f2
b, q, k(w̃)=−q log(N)+log(gb(w̃, k)) (59)

and define the pressure by

F2
L(b, q)= lim

k Q .

1
k

log C
w ¥ q

+
k

f2
b, q, k(w̃). (60)

Then there exists a unique b — b(q) such that the topological pressure F2
L

vanishes. (42) The numbers D(q)=b(q)
q − 1 are the Renyi dimensions, and the

multifractal spectrum is the Legendre transform of D(q).
We are currently investigating the relations between this and macro-

scopic transport properties. (39) In particular, we are trying to interpret the
singular values in terms of avalanche properties. In fact, the singular value
a i(w̃, t) is the local contraction rate, at time t, along the trajectory w̃, in a
direction corresponding to the ith eigenvector of the matrix D̃Tw1

· · · D̃Twt
·

DTwt
· · · DTw1

, where d̃enotes the transpose. The matrix DTw1
gives exactly

the redistribution of energy after the avalanche w1. Consequently, the
a i(w̃, t)’s are the singular values of the t time step ‘‘transport matrix’’
DTwt

p · · · p DTw1
when the trajectory in the phase space is w̃. In particular,

it is well known that 1
t log a i(w̃, t) Q zL(i) almost-surely, where zL(i) is the

ith Lyapunov exponent of the dynamical system (33). But we have seen in
Section 2.3.2 that the Lyapunov exponents are related to energy transport.
Consequently, we believe that there is a strong connection between the
energy transport properties in the lattice, on one hand, and the fractal
structure of the attractor on the other hand. Equation (49) enhances this
aspect, but there might be more general relations that we are currently
researching. (39)

2.6. Finite-Size Scaling

We would now like to address the question of finite-size scaling on the
basis of the results obtained above. Let us first discuss the scaling of FL(g)
(Eq. (54)). This function plays a similar role as the generating functional in
quantum field theory and g acts as a conjugated field to the observable n. It
must, in particular, be emphasized that the topological pressure in Eq. (54)
contains all information about the scaling properties of the probability dis-
tribution on the space of trajectories of the avalanche observable n. Con-
sequently, a scaling theory appears to be possible, in analogy to statistical
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mechanics. Formally, when h=0, one can associate to each local field gi an
exponent yi and seek a scaling form for FL(g) such as

FL(g)=LbH(Ly1 g1,..., Lyn gn,...), (61)

where H is a universal function. This provides the scaling of the n points
cumulants. However, one has introduced an infinite number of fields and
this formula raises the question: what are the relevant fields ( in the renor-
malization group sense, i.e., unstable directions for the renormalization
flow) or in other words which scaling exponents define the universality
classes in SOC? In classical critical phenomena, the renormalization group
approach and the renormalization properties of the Hamiltonian and of the
free energy (8) allow one to select the relevant fields and two scaling expo-
nents are extracted: a (the specific heat exponent) and g (the correlation
length). In the SOC case, the main difficulty is to adapt the renormalization
schemes and to select the relevant fields in order to build the scaling theory
(see ref. 36).

For the generating function (56) of the marginal probability distribu-
tion PL(n), the scaling form (61) reduces to

GL(t)=Lbn(1 − yn)G(tLbn), (62)

where G is a universal function. This form corresponds to the Kadanoff
et al. finite-size scaling Ansatz. (13) In particular, the cumulant CL(q) has a
scaling factor:

s(q)=def lim
L Q .

log(CL(q))
log(L)

, (63)

which is a linear function22 of q, and s(q)=bn(q+1 − yn) for q \ yn − 1.

22 Recently, it has been argued that the finite-size form (Eq. (62)) might be violated in several
models such as the BTW model (14) or the Zhang model. (15) Alternative scalings where s(q) is
a nonlinear function of q have been proposed. (14) The conclusions in refs. 14 and 15 were,
however, essentially supported by numerical simulations and theoretical results are still
missing. In particular, the numerical bias induced by numerics was not discussed. (24) Such a
scaling entails very singular properties for the asymptotic distribution function (and for the
asymptotic topological pressure, if it exists) and, consequently, for the asymptotic dynami-
cal system. This opens up interesting questions and prospects that will be discussed in a
forthcoming paper.

Note that the measured exponents yn ¥ ]1, 2[ for the usual avalanche
observables. Consequently, s(q) > 0 for q \ yn − 1, and the moments of
order q \ yn − 1 diverge in the limit L Q .. This implies a loss of analyticity
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of the limiting generating function. As discussed below, this effect is mani-
fested by a Lee–Yang phenomenon. In particular, the properties of the
critical zeros are directly related to the s(q)’s. In the case of Eq. (62), the
distribution of zeros is characterized by the exponents bn and yn, but rela-
tions linking the Lee–Yang zeros distribution to the s(q)’s can be derived
for more general scaling. (24)

As discussed in the previous section, there exist close relations between
the fractal structure of the attractor and the avalanche distribution. This gives
hints for characterizing the behavior of avalanche distributions when the
size increases. A prominent example was given in ref. 18. The Ledrappier–
Young formula, (50) which relates the partial Hausdorff dimension, the
Lyapunov exponents and the KS entropy, allowed us to show that the
critical exponent of avalanche size necessarily belongs to the interval [1, 2[
( in particular it is strictly lower than 2).

Other relations of this kind may be obtained from the potential (41).
Let b(q) be defined as in Eq. (42); then, from (45) we have

GT(b,..., b)
NT(q − 1) =1. (64)

Denote kL(b)=limT Q .

1
T log GT(b,..., b); then

kL(b(q))=(q − 1) log(N). (65)

kL is directly related to the generating function of the joint probability
of avalanche sizes. (In particular, were the successive avalanche sizes to
be independent we would have kL(b(q))=GL(b(q) log E).) On the other
hand, b(q) is directly connected to the structure of the attractor. Hence-
forth, Eq. (65) imposes constraints on the scaling of the joint probability of
avalanche sizes (and henceforth on the marginal probability PL(s)), related
to the fractal properties of the invariant set. This has to be investigated
further, and this will be done in a separate paper.

2.7. The Limit N Q / and the Lee–Yang Phenomenon

Rather than attempting to give a definition of the thermodynamic
limit for the Gibbs state, one can, as usual in equilibrium statistical
mechanics of phase transitions, focus on the analyticity properties of the
thermodynamic potential (free energy). More precisely, from Eq. (54), the
topological pressure is nothing but the generating function for the joint
distribution of the avalanche observable n. This quantity certainly exists for
finite L and has to be defined also in the thermodynamic limit if we admit
that there exists a limit probability when L Q .. However, if a critical state
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is indeed achieved, the finite-size topological pressure should develop sin-
gularities as L Q ., h=0.

The topological pressure (54) is a complicated object to handle, even
numerically. However, one can argue that if the generating function, (55),
of the marginal distribution develops singularities in the thermodynamic
limit, then F has singularities as well. In equilibrium statistical mechanics,
a standard way of handling the singularities of the free energy and the
scaling as L Q . is the study of the Lee–Yang zeros. (6) In many examples,
the partition function of finite-size systems is a polynomial in a variable z
which typically depends on control parameters like the temperature or the
external field. Since all coefficients are positive there is no zero on the
positive real axis. However, in the thermodynamic limit, at the critical
point, some zeros pinch the real axis at z=1, leading to a singularity in the
free energy. The finite-size scaling properties of the leading zeros and of the
density of zeros near z=1 determine the order of the transition (11) and also
the critical exponents in the case of a second-order phase transition. (12) In
this paper, we show numerically that the same effect arises for the generat-
ing function of PL(s, h) for h=0, while there is no Lee–Yang phenomenon
for h > 0. This property is not specific to the observable s or to the Zhang
model. Indeed, we showed in ref. 24 that this property arises as soon as
a probability distribution PL(n), n=1 · · · tn

L < ., converges to a power
law K

ny , n=1 · · · . when L Q .. Furthermore, when 1 < y < 2 (which is the
case for the usual avalanche observables and all SOC models), interesting
anomalous finite-size scaling effects are observed.

Since tn
L(h) is finite for finite L, the generating function

ZL(z)= C
t

n
L (h)

n=0
znPL(n, h), (66)

where z ¥ C, is a polynomial of degree tn
L(h). In particular, since ZL(z)

is an analytic function of z in the complex plane, all its moments exist.
Since all PL(n, h) are positive, ZL(z) has no zero on the positive real axis
for finite L. Consequently the log-generating function log(ZL(z)) is well
defined on Rg

+. More precisely, ZL(z) > 0 for z in a small neighborhood of
Rg

+ where GL(t)=log(ZL(e t)) is an analytic function of z (or t).
For finite L, ZL(z) has tn

L(h)+1 zeros in C, which are either real [ 0
or complex conjugate. Denote them by zL(k), k=0 · · · tn

L, and order them
such that 0 < |zL(1) − 1| [ · · · [ |zL(k) − 1| [ · · · [ |zL(tn

L+1) − 1|. Write
zL(k)=RL(k) e ihL(k)=e tL(k).

We now report the following numerical observations for the avalanche
size distribution. A general theory and analytical results, extending to other
models of SOC, are developed in ref. 24.
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Fig. 7. Lee–Yang zeros in the z plane. (a) The curve CL for L=40. (b) Local behavior near
z=1 of the Lee–Yang zeros for various L values in the z complex plane Ec=2.2, E=0.1, and
h=0.

• The zeros lie on a curve CL in the complex plane which accumulate
to the unit circle. This curve, however, is not a circle. In particular, it has a
‘‘cusp shape’’ in the neighborhood of z=1 (Fig. 7(a)). An analytic form is
given in ref. 24.

• For h=0 infinitely many zeros accumulate on z=1 (see Fig. 7(b)
and Fig. 8). Consequently, the pressure ceases to be analytic in the thermo-
dynamic limit, as one would expect. Note that this property is equivalent
to the divergence of the moments mL(q) since it can be proved that the

10 100
ln(L)

1e–02

1e–01

1e+00

ln
[d

(z
L
(1

),
1

)]

h=0.
h=0.05.
h=0.1

Fig. 8. Distance of the first Lee–Yang zeros zL(1) to z=1 versus L, Ec=2.2, E=0.1 in the
critical case h=0 and subcritical case (h=0.1, h=0.05).
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1e+00

Fig. 9. Argument of the Lee–Yang zeros zL(4), zL(6), zL(8) for Ec=2.2, E=0.1 in the criti-
cal case h=0 and in the subcritical case h=0.1 ( inset). In solid lines are drawn the interpola-
tion curves y=2pk(cx−2)

1
s (conservative case) and y=2pk(a+cx−2)

1
s (nonconservative case)

where a and c have been determined by regression.

moments mL(q), for any q larger than some q0 diverge if and only if a
Lee–Yang phenomenon occurs. This opens a way toward a scaling theory
from the behavior of the Lee–Yang zeros, in a way similar to what was
done in equilibrium statistical mechanics. (7, 9–12)

• For h > 0 (subcritical regime) the zeros do not pinch z=1. This is a
clear indication that in this case there is no critical state in the thermo-
dynamic limit (Fig. 8).

• There exist characteristic features of the zeros that can be connected
to the critical behavior.

– For h=0, the angle hL(k) (argument of zL(k)) scales like
hL(k) ’ Lb (Fig. 9). It can be proved that, for a probability distribution
converging to a power law and obeying a finite-size scaling form s−yg( s

Lb ),
this scaling is exact (with, however, a slight deviation for the first two
zeros (24)). More generally, if the probability distribution obeys the scaling
form (29), then one can prove that the angle hL(k) scales like:

hL(k) ’
2pk

tn
L(h)

. (67)

For n=s, the avalanche size, it follows from Eqs. (26) and (30) that
hL(k) ’ 2pk

ē − 1/s
L

, namely that

hL(k) ’
2pk

[a+cL−2]− 1
s

, (68)
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where a and c are proportional to 2(1 − c) EX̄+
L and X̄+

L (see Eq. (26))
respectively. a and c depend slightly on L (via X̄+

L ) but they converge
rapidly to a constant as L Q . (see Fig. 4(a) for the L dependence of X̄+

L ).
Therefore, studying the L dependence of hL(k) gives a straightforward way
of computing s (or b=2

s). We performed a numerical study of the angles
hL(k) for Ec=2.2, E=0.1 in the conservative and nonconservative case
(h=0.1) for L=10 to L=50. We obtained b=2.59 ± 0.04 and s=0.772.
This corresponds to a critical exponent y=1.227, not so far away from the
theoretical value y=1.253 obtained by the renormalization group analy-
sis. (37) Going to a larger size would certainly improve the accuracy, though
one has to be careful of the pathological bias induced by the standard
numerical procedure, where the number of samples is fixed independently
of the system size. (24) In Fig. 9, we plotted the angle hL(k) for k=4, 6, 8
and a nonlinear fit where the constants a and c in Eq. (68) were used as
fitting parameters.

– In many models of statistical mechanics the singular part of the
free energy obeys a finite-size scaling form f s(t, V)=1

V W[t(AV)
1

2 − a ]
(equivalent to Eq. (62)), (8–10) and the first zeros in the t plane (t=log(z))
form a characteristic angle with the real axis, independent of L, which can
be related to the specific heat exponent a. Here the angle in the t plane
violates the usual scaling and depends weakly on L ( in fact, the violation is
logarithmic (24)). It can be proved that this effect is not an indication that the
topological pressure does not obey finite-size scaling but is simply due to the
value of the exponent y > 1.

3. DISCUSSION AND CONCLUSION

In this paper we have discussed the application of a thermodynamic
formalism to the Zhang model of Self-Organized Criticality. We have
shown that under physically natural assumptions Gibbs measures can be
defined to characterize various statistical properties of the finite-size SOC
state. This opens up the possibility of building the equivalent of a statistical
mechanics theory of critical phenomena for SOC models. It might also
open the way toward a general setting in which concepts like universality
classes could be properly defined. Indeed, although the extrapolation of the
thermodynamic formalism to the infinite lattice size limit needs further
developments, this work suggests that the topological pressure can be used
as an indicator of a phase transition. In particular, we found a Lee–Yang
phenomenon for a quantity derived from the pressure, and we noticed that
several characteristic patterns emerge, which could allow for a future clas-
sification of the models.
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We would now like to discuss some points that have not been devel-
oped in the paper.

1. Extensions of the Thermodynamic Formalism. In this paper, we
have focused on the most common potentials which are directly related to
dynamical properties and to the fractal structure of the support of the
invariant measure. We have also shown that they are related to the ava-
lanche-size distribution. We now intend to construct more general potentials
allowing, on one hand, an investigation of the properties of other avalanche
observables. On the other hand, we showed numerically in ref. 19 that the
Lyapunov spectrum exhibits a finite-size scaling property with a universal
exponent yl related to the anomalous diffusion exponent. It would be worth
showing this property analytically by producing a suitable potential.

2. Spectral-Gap Vanishing. In the finite system, the exponential
correlation decay along the time trajectory is given by the spectral gap
between the largest eigenvalue of the Markov matrix W (which is 1) and
the second eigenvalue. As mentioned above, this gap is positive whenever
A is mixing. When L diverges, NL diverges for h=0 since NL \ t s

L. On the
other hand, the notion of critical phenomena involves a non-exponential
correlation decay or a divergence of the time-correlation length, which is
the inverse of the spectral gap. Consequently, one expects that for h=0 the
spectral gap vanishes in the thermodynamic limit. It might be useful to
compute the spectral gap and, in particular, its L dependence. This could
be achieved from standard techniques on Markov chains, (43) provided we
have additional information about the structure of W. From the analogy
with critical phenomena we expect the gap to vanish like Lg, where g plays
the role of the exponent giving the spatial correlation decay in statistical
mechanics. This could be a new exponent that might be related to the
exponent yl which we have found in ref. 19.

3. Explicit Form of the Energy Density. In Section 2.4 we used the
result mL{Ug(S)} ’ ga, for which we only offered a numerical test. An
analytic computation would certainly be more satisfactory. This could be
done if we could compute the energy profile depicted in Fig. 5(b) This
would also allow us to elucidate the particular shape with several peaks,
which is still an open problem in SOC.

These points are under current investigation.

APPENDIX

In this appendix, devoted to non-specialists, we give a brief summary
of the thermodynamic formalism used in Section 2.5 to construct Gibbs
measures. Useful references are refs. 22, 23, 27, and 48.
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Assume that we have a set of symbols w ¥ I and a transition matrix A.
Call X (X+) the set of bi-infinite (resp. right infinite) legal sequences. Write
[w̃]n for an n-cylinder (this is the subset of X where the sequences have
the same n first digits as w̃). Denote by sA the shift on X. In the following
we restrict our discussion to the set of right infinite sequence X+, as is
common in the framework of the thermodynamic formalism. (27, 48) There
exists a formal analogy between a sequence of X+ and a (right-infinite) one-
dimensional chain of Potts-like spins taking values in I. The transition
matrix A then acts as a hard-core-like potential in the sense that, if the
spin at the tth place in the chain has a value wt, the next spin (at the place
t+1) can only take values in the subset of I such that Awt, wt+1

=1. Other
transitions are forbidden. This formalism allows, in particular, a study of a
class of dynamically relevant invariant measures of the dynamical system as
formal analogy to Gibbs measure in a chain of spins.

Let F(X+) be the space of Hölder continuous functions for a metric
dh(x, y)=hN on X+, where N is the largest nonnegative integer such that
xi=yi, i < N, and 0 < h < 1. (48, 27) We call a potential an element of F(X+).
In particular, a potential has the following property:

varn(f) [ Chn, n \ 0, (69)

for some C > 0 and some h ¥ ]0, 1[, where varn(f)=sup{|f(x) − f(y)|,
xi=yi, i < n}. Note that Eq. (69) is the equivalent of the exponential
decrease of the interaction with distance, ensuring the existence of a ther-
modynamic limit in statistical mechanics. (4, 5) A finite-range potential of
order r is such that f(x)=f(y) if xi=yi for 0 [ i < r; namely the values
that f takes depend only on the first symbols. Any infinite-range poten-
tial in Fh(X+) can be uniformly approximated by a sequence of r-range
potentials.

Set STf(w̃)=;T
t=1 f(s t

Aw̃), where f is a potential. Define the finite
partition function by

ZT(f)= C
w̃ ¥ q

+
T

exp{STf(w̃)}, (70)

and the pressure (the free energy density) by

F(f)= lim
T Q .

1
T

log ZT(f). (71)

It can be proved that this limit exists provided f decays sufficiently
fast (see Eq. (69)), namely there is no ‘‘phase transition’’ provided the
potential belongs to F(X+).
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A Gibbs measure is an invariant measure where the potential gives an
exponential weight to the cylinders. More precisely, mf is a Gibbs measure
if there exists an A such that for all T > 0 and w ¥ q+

T

A−1 [
mf([w̃]T)

eSTf(w̃) − TF(f) [ A. (72)

This essentially means that mf is exponential with a weight given by
the sum of the values that f takes on the orbit of w. Since ZT(f) ’ eTF(f),
the measure of a spin chain of length T is ’

exp(;T
t=1 f(stw̃))
ZT(f) and the formal

analogy with statistical mechanics is straightforward.
In this setting one also associates to each potential f the Ruelle oper-

ator Lf, which is a formal extension of the Kramers–Wannier transfer
matrix for a spin chain. (4) An extension of the Perron–Frobenius theorem
for matrices, due to Ruelle, shows that when A is irreducible and ape-
riodic, Lf admits a unique maximal positive eigenvalue which is equal
to eF(f). The corresponding left eigenvector is the Gibbs measure mf. The
spectrum of Lf provides information about the (strong) mixing properties
of mf. In particular, the spectral gap between the largest eigenvalue (eF(f))
and the remaining part of the spectrum determines the dominant exponen-
tial decay rate of the correlation functions (or decay rate to equilibrium).

mf also satisfies a variational principle analogous to the free-energy
minimization in statistical mechanics. Call h(m) the entropy of the invariant
measure m; then the quantity h(m)+> f dm admits a unique maximum for
m=mf equal to the pressure F(f). The maximizing measure is naturally
called an equilibrium state. Each equilibrium state for a potential f ¥ F(X+)
is a Gibbs state. There exists only one maximum (or one equilibrium state
related to the observable f) when A is mixing. This situation corresponds
to the absence of a phase transition in statistical mechanics.

The pressure, beyond the variational principle, shares others charac-
teristics with the free energy: it is convex, nondecreasing, sub-additive
(F(f1+f2) [ F(f1)+F(f2)) and is a generating function for the expec-
tations with respect to mf. More precisely, the following can be proved. (27, 48)

Let f, g ¥ Fh, and set P(t)=def
F(f+tg), where t ¥ R; then

PŒ(0)=
d
dt

F(f+tg) :
t=0

=F g dmf=def E[g]f, (73)

where E[]f is the expectation with respect to mf. In the same way:

s2
f(g)=Pœ(0)= lim

T Q .

1
T

C
T

t=1
E[g(t) g(0)]f − E[g]2

f, (74)
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where E[g(t) g(0)]f − E[g]2
f is the correlation function of the function g at

time t and where the average is performed with respect to mf. This can be
generalized to correlation functions between different observables and to
higher order. (45) The coefficient sf(g) characterizes the average fluctuations
of g along trajectories weighted by the measure mf. Provided that sf(g) > 0
the central limit theorem holds, namely the fluctuations are Gaussian
(more precisely limT Q . Prob[;T

t=1 g(t) − TE[g]f

sf(g) `T
< y]=N(y), where N is the

characteristic function of the Gaussian distribution).
From the relation (74) one can extract Green–Kubo transport coeffi-

cients from microscopic quantities. (44, 45)

According to the choice of potential one is able to extract different
information about the statistical properties of the dynamics. The situation
is analogous to that encountered in statistical mechanics, where the choice
of the thermodynamic potential corresponds to a different choice of
ensemble. However, one has a priori an infinite number of choices for the
potential (resp. measure), but only a few of them are physically significant.

ACKNOWLEDGMENTS

This work has been partially supported by the Zentrum fuer Inter-
disziplinaere Forschung (ZIF) in Bielefeld (Germany), within the frame-
work of the project ‘‘The Sciences of Complexity: From Mathematics to
Technology to a Sustainable World.’’ B.C. warmly acknowledge the ZIF
for its hospitality. He also thanks the CNRS for its support.

REFERENCES

1. P. Bak, C. Tang, and K. Wiesenfeld, Self organized criticality: An explanation of 1/f
noise, Phys. Rev. Lett. 59:381–384 (1987); Self organized criticality, Phys. Rev. A. 38:
364–374 (1988).

2. P. Bak, How Nature Works (Springer-Verlag, 1996).
3. H. J. Jensen, Self-organized criticality: Emergent complex behavior in physical and

biological systems, in Cambridge Lecture Notes in Physics, Vol. 10 (Cambridge University
Press, 1998).

4. D. H. Meyer, The Ruelle–Araki transfer operator in classical statistical mechanics,
Lecture Notes in Physik, Vol. 123 (Springer-Verlag).

5. D. Ruelle, Statistical Mechanics: Rigorous Results (Benjamin, New York, 1969).
6. C. N. Yang and T. D. Lee, Statistical theory of equations of state and phase transitions I.

Theory of condensation, Phys. Rev. 87:404–409 (1952); Statistical theory of equations of
state and phase transitions II. Lattice gas and Ising model, Phys. Rev. 87:410–419 (1952).

7. R. Abe, Note on the critical behavior of Ising ferromagnets, Prog. Theor. Phys. 38 (1967)
8. M. J. Fisher, The renormalization group in the theory of critical behaviour, Rev. Mod.

Phys. 46:597–616 (1974).
9. C. Itzykson, R. B. Pearson, and J. B. Zuber, Distribution of zeros in Ising and Gauge

models, Nuclear Phys. B 220[FS8]:415–433 (1983).

1324 Cessac et al.



10. M. L. Glasser, V. Privman, and L. S. Schulman, Complex-temperature-plane zeros:
Scaling theory and multicritical mean-field models, Phys. Rev. B 33 (1987).

11. W. Janke and R. Kenna, The strength of first and second order phase transitions from
partition function zeros, J. Stat. Phys. 102:1221–1227 (2001).

12. R. J. Creswick and S. Y. Kim, Finite-size scaling of the density of zeros of the partition
function in first and second order transitions, Phys. Rev. E 56:2418 (1997).

13. L. P. Kadanoff, S. R. Nagel, L. Wu, and S. Zhou, Scaling and universality in avalanches,
Phys. Rev. A 39:6524–6527 (1989).

14. C. Tebaldi, M. De Menech, and A. Stella, Phys. Rev. Lett. 83:3952 (1999).
15. R. Pastor-Satorras and A. Vespignani, Anomalous scaling in the Zhang model, Eur. Phys.

J. B 18:197–200 (2000)
16. Ph. Blanchard, B. Cessac, and T. Krüger, A dynamical systems approach for SOC models

of Zhang type, J. Stat. Phys. 88:307–318 (1997).
17. B. Cessac, Ph. Blanchard, and T. Krueger, A dynamical system approach to self-

organized criticality, in Mathematical Results in Statistical Mechanics, Marseille 1998
(Word Scientific, Singapore).

18. Ph. Blanchard, B. Cessac, and T. Krüger, What can one learn about self-organized criti-
cality from dynamical system theory ?, J. Stat. Phys. 98:375–404 (2000).

19. B. Cessac, Ph. Blanchard, and T. Krüger, Lyapunov exponents and transport in the
Zhang model of self-organized criticality, Phys. Rev. E 64:016133 (2001).

20. H. Y. Zhang, Scaling theory of self-organized criticality, Phys. Rev. Lett. 63:470–473
(1988).

21. Ya. G. Sinai, Gibbs measures in ergodic theory, Russ. Math. Surveys 27:21–69 (1972)
22. D. Ruelle, Thermodynamic Formalism (Addison–Wesley, Reading, MA, 1978).
23. R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lect.

Notes in Math., Vol. 470 (Springer-Verlag, Berlin, 1975).
24. B. Cessac and J. L. Meunier, Anomalous scaling and Lee–Yang zeroes in self-organized

criticality, Phys. Rev. E 65:1–18 (2002).
25. D. Dhar, Phys. Rev. Lett. 64:1613 (1990); D. Dhar and S. N. Majumdar, J. Phys. A

23:4333 (1990); S. N. Majumdar and D. Dhar, Physica A 185:129 (1992); D. Dhar and
R. Ramaswamy, Phys. Rev. Lett. 63:1659 (1989).

26. D. Sornette, A. Johansen, and I. Dornic, Mapping self-organized criticality onto criti-
cality, J. Phys. France 5:325–335 (1995).

27. G. Keller, Equilibrium States in Ergodic Theory (Cambridge University Press, 1998).
28. A. Katok and B. Hasselblatt, Introduction to Dynamical Systems Theory (Kluwer, 1996).
29. A. Vespignani and S. Zapperi, How self-organized criticality works: A unified mean-field

picture, Phys. Rev. E 57:6345 (1998).
30. V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Lyapunov exponents of

dynamical systems, Trans. Moscow Math. Soc. 19:179–210 (1968).
31. M. Pollicott, Lectures on ergodic theory and Pesin theory on compact manifolds, London

Math. Soc., Lect. Notes Series, Vol. 180 (Cambridge University Press, 1993).
32. J. P. Eckmann and D. Ruelle, Ergodic theory of strange attractors, Rev. Mod. Phys.

57:617 (1985); J. P. Eckmann, O. Kamphorst, D. Ruelle, and S. Cilliberto, Phys. Rev. A
34:4971 (1986).

33. Eurandom conference, Longe Range Stochastic Dynamics, Eindhoven, December 2001.
34. Ph. Flajolet, Theoretical Computer Sci. 215:371–381 (1999).
35. E. Seneta, Non-Negative Matrices (Allen and Unwin, London, 1973).
36. D. Volchenkov, Ph. Blanchard, and B. Cessac, Quantum field theory renormalization

group approach to self-organized criticality: The case of random boundaries, Int. J. Mod.
Phys. B 16:1171–1204 (2002).

Self-Organized Criticality and Thermodynamic Formalism 1325



37. L. Pietronero, A. Vespignani, and S. Zapperi, Phys. Rev. Lett. 72:1690 (1994); A. Vespignani,
S. Zapperi, and L. Pietronero, Phys. Rev. E. 51:1711 (1995).

38. K. Falconer, Techniques in Fractal Geometry (Wiley, 1997).
39. Ph. Blanchard, B. Cessac, and S. Sequeira, in preparation.
40. K. J. Falconer, Bounded distortion and dimension for non-conformal repellers, Math.

Proc. Camb. Phil. Soc. 115:315–334 (1994).
41. L. M. Barreira, A non-additive thermodynamic formalism and applications to dimension

theory of hyperbolic dynamical systems, Ergod. Theor. Dynam. Syst. 16:871–927 (1998).
42. K. J. Falconer, Generalized dimensions of measures on self-affine sets, Nonlinearity

12:877–891 (1999).
43. M. Benaim and N. E. Karoui, Promenades aléatoires, Cours de l’école polytechnique.
44. B. Dorfmann, An Introduction to Chaos in Nonequilibrium Statistical Mechanics

(Cambridge University Press, 1999).
45. P. Gaspard, Chaos, scattering, and statistical mechanics, in Cambridge Nonlinear Science,

Series 9 (Cambridge University Press, Cambridge, 1998).
46. C. Beck and F. Schloegl, Thermodynamics of chaotic systems, in Cambridge Nonlinear

Science, Series 4 (Cambridge University Press, Cambridge, 1993).
47. P. Bak and C. Tang, Critical exponents and scaling relations for self-organized critical

phenomena, Phys. Rev. Lett. 60:2347–2350, (1988).
48. W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic

dynamics, Collection Asterisque (Société Mathématique de France, 1990), pp. 187–188.
49. A. Barrat, A. Vespignani, and S. Zapperi, Fluctuations and correlations in sandpile

models, Phys. Rev. Lett. 83:1962 (1999).
50. F. Ledrappier and L. S. Young, The metric entropy for diffeomorphisms, Ann. Math.

122:509–574 (1985).
51. O. M. Sarig, Thermodynamic formalism for countable markov shifts, Ergod. Th. Dyn.

Sys. 19:1565–1593 (1999).
52. L. S. Young, Ergodic theory of differentiable dynamical systems.
53. C. Maes, F. Redig, E. Saada, and A. Van Moffaert, On the thermodynamic limit for a

one-dimensional sandpile process, Markov Process. Related Fields 6:1–21 (2000).

1326 Cessac et al.


	
	1. GENERAL SETTING
	2. THERMODYNAMIC FORMALISM
	3. DISCUSSION AND CONCLUSION
	APPENDIX
	ACKNOWLEDGMENTS

